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ACOUSTIC DISPERSION IN RAREFIED GASES

V. A, Bubnov UDC 534-13:532.51
The problem of acoustic dispersion in rarefied gases is solved on the basis of the hydrodynam-
ical equations of Predvoditelev. The theoretical equation is compared with the experiments of

Greenspan for five monatomic gases. Theory and experiment are compared up to a Knudsen.
number of order unity.

1. On the Nonideal Continuity Parameter

In 1948 A, S, Predvoditelev described a technique for improving the Navier—=Stokes equations in appli-
cation to problems in which the hydrodynamic velocity gradient is related to the path traversed by the mole-
cules between collisions. This technique is based essentially on the Maxwell transport equation and a more
precise hypothesis regarding the relationship between the hydrodynamic flow velocity and the transport
velocities of two colliding molecules. The indicated relationship must be determined in transforming from
the Maxwell transport equation to the continuum equations.

If the most general assumptions are advanced with regard to the transport velocities of two colliding
molecules, the equations for the hydrodynamic stresses have the form [2]

0x; ox;,
i=1 2 3

£ . 1 5 0y dv; y—1 . \

i=p 4+ — (2, —v?)—2u | — —

Si=p+— A ez —o) u( o 5 de) l

— du. . l

P§i§i=_”( - + = )+(02i02i—vlivli); i=1,2 3, i (1.1)
}

When the transport velocities of the two colliding molecules are equal, i.e., when vgj = v = vj, Egs. (1.1)
go over to the expressions derived in the theory of the Navier—Stokes equations. Equations (1.1) can be used,
however, to obtain the more complete Predvoditelev equations in the form [2]
dv; A, 0 dp
—F . viv._—z}iu.]___.__
p Y }; 34, ™ [0 (02055 1:013) 3x

F) . i

. 9
+u[v2v,~ﬂ2—w :

i

divv ] : (1.2)

It is important to note that in the Maxwell calculations (2 — v) = 1/3, but this expression is valid only for a
monatomic gas. Consequently, this restriction of Maxwell is tacitly implicit in the adiabatic equation for a
monatomic gas. The latter fact was also first noted by Predvoditelev [1].
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We transform the terms of Eq. (1.2) into dimensionless form. Equations {1.1) are used to select the
following scale for the transport velocities of the colliding molecules:

[L'Zi] = [Uli] = i//;gf’i_ . (13)

Here pg, U, and L are the density, velocity, and length scales, respectively. Adopting the customary scales
for all other quantities, we rewrite the system (1,2) in the dimensionless form

3
du, AK 8 0 dp i, J . ;
L Uy Ug; — Uy;0h;)] = — ——— f v, 2— divv], (1.4}
P+ 3, 2 [P (U055 — v3,01)] T e [v + 12— o
=
where
W _op
pl U Re (1.5)
To close the system (1.4) we invoke the hypothesis
3
du,
V= A 8 (5 — ) i,
1 i ﬁ ( i 01) axj
(1.8
> du, .
Uy =Ui_A.E (x5 — Xo3) 6x:- ,i=1,2 3
=1
This brings us to the original equations of Predvoditelev [1]:
[ %V__ +p [%(1 —P)gradV? —Bvdivv (I — f)rotV x V} = grad p-+ —-é——[ vV -+ (2—»v)graddiv\/’:& . 1.9
e

Predvoditelev called the quantity § = AjAK/3A,; the nonideal continuity parameter. Knowing that 4; and A,
are numbers, we infer that the parameter 8 contains only one experimental constant A. It is evident from
(1.6) that it determines the magnitude and direction of the gradient and can therefore have any sign.

Inasmuch as acoustic motions do not have a characteristic velocity, the Reynolds number is given as

Re—r— 0P (1.8)
VO

Now the parameter 8 =8¢/ r.

2. Acoustic Dispersion

The acoustic dispersion equations are readily obtained by using the Hugoniot —Hadamard compatibility
conditions. These conditions are known to characterize the formation and propagation of a wave front. They
make it possible to find the velocity of the discontinuity surfaces in space solely by determining those sur-
faces, without integration. Predvoditelev [3] has elaborated the method of Hadamard in application to acousti-
cal problems, so we need not delve at length into the details of the mathematical aspects of the problem.

To solve the stated problem we use the one-dimensional equations (1.7) in the dimensional form

du op o0*u du
— = e (3= —— + 2P0 —,
o or BT WR (2.1)
the well-known heat-transfer equation
oT ou 0T
.—;‘— =k [} (2-2)
o TP T P
and the equation of continuity
‘ op ou
—_— _:.. =3 O_ 12.3
ot P % (2.3)

Here, as is the custom in linear acoustics, we neglect the influence of acoustic streaming.

To Eq. (2.1) we apply the operation of translation across the fronts by means of the identity and kine-
matic conditions of Hadamard. We have as a result
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;\"l_png+2ﬁpu -}—{3._?)!1, _A’z" . (2.4)
1u - }‘,’lu
But the equation of continuity implies

_ Ap8 = Phy,,. (2.5)

Furthermore, it can be shown that fhe following equation holds for periodic motions:

}"2u P _lﬂ
My g
In light of these remarks we now rewrite Eq. (2.4) in the form
Aip 2. - noo.
12— gt s 20pgl— (3—1y) Lo
" 0 o (2.6)
Here the velocity u is eliminated on the basis of the hypothesis
we X8 (2.7)
g

To Eq. (2.2) we apply the operation of translation across the acoustic wave fronts. We then have
— pc,ghr + phy, = khor.
Alternatively, recognizing that &4 = v(p/p), we rewrite the latter equation in the form
& _, bk e
Y My P Ay
We use the equation of state for an ideal gas:

p=oRT,

(2.8)

which can also be written
lgp=I1gR+1gT + Igp.

We take the time derivative:
1 d 1 a7 1 do
p d T & o o
Next, having applied the operation of translation across the acoustic wave fronts, we represent the state equa-
tion in the form

T = . .9
by 0T Mg (2.9)
By means of relation (2.5) and Eq. (2.9) we transform Eq. (2.8) as follows:
Mp & v—1 g
- = —— + T " e .
hp ¥ v P+i,hr} (2.10)
g' }.,17'

We assume that the temperature oscillation in the acoustic wave takes place at the frequency of the
velocity oscillations. From this assumption we deduce the equation

hr 0
Mr g
Now, consolidating (2.6) and (2.10), we have
2 —1 2 - [T
L T s L B e
L ¢ O_imﬂ P
g2

Separating the real and imaginary parts in the latter equation, we represent the complex velocity of sound as
follows:
g=g + ig.
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Fig. 1. Results of measurements and theory for five mona-~
tomic gases. Solid curve) proposed theory; dashed curve)
Barnett approximation.

We recall here that the quantity g is small in comparison with gi, because the sound absorption coefficient
is always small. We also use the well-known Eiken relation

k
ue,

= %—(9v—5)=vf.

whereupon we readily deduce the equations

&=g [(lw = )+ (3;") : ;’:—al} , i
2g1g2=~gi[(3_v +f)_-i_b1—;- Gl b1]~i .
Tl Y Y r J
The following additional notation is introduced here:
b1=~§~ D oy = af,
If we neglect g% in comparison with g%, we can show at once that the absorption coefficient is
o= 28 (2.12)

i
Normally, the quantity o' = agy/w is involved in the processing of the experimental data [4]. Now by
well-known rules we readily obtain from (2.11)

. V' 2r(Ar — Ba,)

o = — (2.13)
(r—20)2 )/ (r—20) (1 --V 1 = m)
where
me B9 —5
V2 {r — 2a,)*
A= DS+ VIEm—2%—5) (2.14)

4422+ 2V 1+ m-+m)

g WU+ VTIm+26—%
29242V T+ m+m)
Ifin (2.13) we set m = 0, @y = —0.2875, and y = 5/3, as is consistent with a monatomic gas, Eq. {2.13) then
goes over to the Predvoditelev expression [3]
o = Vr(0.7r 4+ 0.23)
T (r-+0575)2yr £ 0.575
However, it is obvious from (2.15) that m can be approximately equal to zero only for large values of r,
i.e., for dense gases. In the case of monatomic gases, therefore, Eq. (2.13) refines not only (2.15), but also
the experimental constant «y. To verify Eq. (2.13) we refer to the experiments conducted by Greenspan on

.

(2.15)
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five monatomic gases [4], along with the results of Meyer and Sessler [5] (see Fig. 1). The experiments
show that all five gases behave identically. Equation (2.13) is applied to the experimental results for ap =
—0.12. It is evident from Fig. 1 that agreement between theory and experiment is obtained up to r = 0.15,
which corresponds to a Knudsen number of order unity (5].

The Predvoditelev equations can therefore be used in describing rarefied gas flows up to Knudsen num-
bers close to unity.

NOTATION

V, hydrodynamic velocity vector; u, viscosity; p, density; ¥, specific heat ratio; g9, Laplace value of
the velocity of sound; w, cyclic frequency; cy, specific heat at constant volume; g, phase velocity of sound;
Alus Aloy Alps AIT, parameters of first-order discontinuity; Aoy, A2T, parameters of second-order discon-
tinuity; k, thermal conductivity; R, universal gas constant. '
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FLOW AND HEAT TRANSFER IN A JET NEAR THE
STAGNATION POINT OF A CONCAVE BODY

I. A. Belov and S. A, Isaev UDC 536.242:532.522.2

Results are presented of calculations of flow and heat transfer near the stagnation point of a
‘concave body in a two-dimensional subsonic jet, using a flow establishment method.

The interaction of a jet flow with blunt bodies is usually taken to mean the flow near the stagnation
point, outside the region influenced by the body shape. We consider the problem of specifying such a flow
near the surface of a concave body of constant curvature, located in a subsonic jet. The flow is assumed to
be two-dimensional, and the fluid is assumed to be incompressible and viscous near the body surface. We
restrict the analysis to a small region near the stagnation point, and represent the flow of the jet far from
the surface as being approximately the flow from an ideal source.

_ In the body-fixed coordinate system (%, ©), (Fig. 1), where the £ axis is tangent to the body surface, and
the ¢ axis is normal to it, we select the section £ = ., where the source flow velocity is known and equal to
Vo. We consider that the section £, is at a considerable distance from the obstacle, so that the effect of the
obstacle on the source flow is negligibly small here. The flow is symmetric relative to the obstacle center
£ =t = 0, and the external flow is irrotational; the effect of viscosity is localized in a thin boundary layer
near the obstacle surface. The problem is solved in two stages._In the first stage we seek a solution in the
region where the source flow and the obstacle interact (0 = £ = ), and we formulate boundary conditions
for the viscous flow and heat transfer in the obstacle boundary layer. In the second stage we consider the
establishment of a boundary layer on the obstacle, and determine the friction 7 and the heat flux gy fo the
surface. The problem is solved by a flow establishment method, applied to the unsteady boundary-layer equa-
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