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A C O U S T I C  D I S P E R S I O N  IN R A R E F I E D  GASES 

V. A. B u b n o v  UDC 534-13:532.51 

The problem of acoustic dispersion in rarefied gases is solved on the basis of the hydrodynam- 
ical equations of Predvoditelev. The theoretical equation is compared with the experiments of 
Greenspan for five monatomic gases. Theory and experiment are compared up to a Knudsen 
number of order  unity. 

1. On t h e  N o n i d e a l  C o n t i n u i t y  P a r a m e t e r  

In 1948 A. S. Predvoditelev described a technique for improving the Navier-Stokes equations in appli- 
cation to problems in which the hydrodynamic velocity gradient is related to the path t raversed by the mole- 
cules between collisions. This technique is based essentially on the Maxwell transport equation and a more 
precise hypothesis regarding the relationship between the hydrodynamic flow velocity and the transport 
velocities of two colliding molecules. The indicated relationship must be determined in transforming from 
the Maxwell transport  equation to the continuum equations. 

If the most general assumptions are advanced with regard to the transport velocities of two colliding 
molecules, the equations for the hydrodynamic s t resses  have the form [2] 

Ox~ 2 

+ Ox i /T(V,.p,_~--v~pI;); i =  1, 2, 3, i Oxj 
I 

]=1 ,2 ,3 .  J 

(1.1) 

When the transport  velocities of the two colliding molecules are equal, i.e.~ when v2i = Vli= vi, Eqs. (1.1) 
go over to the expressions derived in the theory of the Navier-Stokes equations. Equations (1.1) can be used, 
however, to obtain the more complete Predvoditelev equations in the form [2] 

dvi Z A1 0 [P(V~p2;--vxPl,)] : OP [ 0 divV] (1.2) 

i 

It is  important to note that in the Maxwell calculations (2 - 7) = %, but this expression is valid only for a 
monatomic gas. Consequently, this restriction of Maxwell is tacitly implicit in the adiabatic equation for a 
monatomic gas. The lat ter  fact was also first  noted by Predvoditelev [1]. 
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We t r a n s f o I ~  the t e r m s  of Eq. (1.2) into d imens ion less  form. Equations (1.1) a re  used  to se lect  the 
following sca le  fo r  the "transport ve lec i t i e s  ef  the colliding molecu les :  

. /  p~U (1.3) 
[v++i] = [vai ] = 9o L 

Here  Po, U, and L a re  the density,  veloci ty ,  and length sca les ,  r espec t ive ly .  Adopting the c u s t o m a r y  sca les  
for  all o the r  quanti t ies,  we r ewr i t e  the s y s t e m  (1.2) in the d imens ion less  fo rm 

3 

tit "dA A1K Z Oox, Ox lop , Rel [ P ~ .  @" -'~--7-- ~ [ 0 ( ~ ) 2 i ~ 2 j - - Z ) l l V l ~ ) ]  : ~ V ~ i  ~_ ( 2 _ _ V )  0 -divV] (1.4) 
0xi j ' 

i=1 

where  
K -  pU _ ~ _ I 

po L poLU Re (1.5) 

To c lose  the s y s t e m  (1.4) we invoke the hypothes is  
3 

vl i = v i + A Z (xj - -  Xoj) Ov~ 
]=1 Oxj 

3 
Z Ov~, i = 1 ,  2, 3. v2~ = v~ - -  A (x~ - -  Xoj ) Oxj 

1=1 

(t.6) 

This brings us to the original equations of Predvoditelev [i] : 

1 �9 
p ~ + p (1--[g) gradV~--~VdivV -+-(1-- ~)rotV )< V = gradp+ 1 

Predvod i t e l ev  cal led the quantity fi = AiAK/3A 2 the nonideal continuity p a r a m e t e r .  Knowing that As and A2 
a re  numbers ,  we in fe r  that  the p a r a m e t e r  fi contains only one exper imenta l  constant A. It i s  evident f rom 
(1.6) that  it d e t e r m i n e s  the magnitude and d i rec t ion  of the gradient  and can t h e r e f o r e  have any sign. 

Inasmuch as acoust ic  mot ions  do not have a c h a r a c t e r i s t i c  velocity,  the Reynolds number  is  given as 

R e = r -  goO (1.8) 
7oJ~ 

Now the p a r a m e t e r  fi = flo/r. 

2.  A c o u s t i c  D i s p e r s i o n  

The  acoust ic  d i spers ion  equations a re  readi ly  obtained by using the H u g o n i o t - H a d a m a r d  compat ibi l i ty  
conditions. These  conditions a re  known to c h a r a c t e r i z e  the fo rmat ion  and propagat ion  of a wave front. They 
make  it poss ib le  to find the veloci ty  of  the discontinuity su r faces  in space  solely by determirAng those  s u r -  
faces ,  without integrat ion.  P redvodi te lev  [3] has  e l abora ted  the  method of Hadamard  in applicat ion to acoust i -  
cal  p r o b l e m s ,  so we need not delve at length into the detai ls  of the ma thema t i ca l  aspec ts  of the p rob lem.  

To solve the s ta ted  p rob l em  we use  the one-d imens iona l  equations (1.7) in the dimensional  fo rm 

Ou "Op 02u Ou 
P Ot Ox " ( 3 - - 7 )  i x ~  +2~gu--,Ox (2.1) 

the wel l -known h e a t - t r a n s f e r  equation 

and the equation of continuity 

c)T Ou 02T 
9c, p k ...... (2.2) 
", Ot ' Ox Ox ~ 

p = 0. (2.3) 
0t 0z 

Here ,  as i s  the cus tom in l inea r  acous t ics ,  we neglect  the influence of acoust ic  s t reaming .  

To Eq. (2.1) we apply the  opera t ion  of t r ans la t ion  a c r o s s  the f ronts  by means  of the ident i ty and k ine-  
ma t i c  conditions of  Hadamard .  We have as a r e su l t  
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~,1--~ = pg + 2[~9u + (3 - -  V) P, ~,, 

But the equation of continuity imp l i e s  

~lpg = P~.. (8.5) 

F u r t h e r m o r e ,  it can be shown that  the following equation holds fo r  pe r iod ic  mot ions :  

X~. g 

In light of  t he se  r e m a r k s  we now r ewr i t e  Eq. (2.4) in the fo rm 

~,lp _ g ,  .~_ 2~[~g~o_ (3 - -  y) ~--- cal. ( 2 .6 )  

Here  the ve loc i ty  u is  e l imina ted  on the b a s i s  of the hypothes is  

u = r (2.7) 
g 

To Eq. (2.2) we apply the  opera t ion  of t r ans la t ion  a c r o s s  the acoust ic  wave fronts.  We then have 

pc~g~lr -% P~I~ = k3r 

Alterna t ive ly ,  recogniz ing  that gZ0 = y(p /p) ,  we r ewr i t e  the l a t t e r  equation in the f o r m  

~lr k ~2r 
g~ = c~ + - -  �9 ( 2 . 8 )  
T p xl. 

We use  the equation of s ta te  for  an ideal  gas:  

p : 9RT, 

which can also be  wr i t t en  
lgp = I g R - -  lgT + lgp. 

We take  the t i m e  der iva t ive :  
1 .  dp I OT ,__ 1 09 

p dt T Ot P Ot 

Next,  having appl ied the  opera t ion  of t r ans l a t ion  a c r o s s  the acoust ic  wave  fronts ,  we r e p r e s e n t  the  s ta te  equa-  

t ion in the  f o r m  

~:~ _ 2 _  _ P ; , ,r  
, (2.9) 

~tp P T ~ip 

By m e a n s  of re la t ion  (2.5) and Eq. (2.9) we t r a n s f o r m  Eq. (2.8) as follows: 

= g . v-___L go 

~,Ip ? '~ [ l-[ a ~'2T ] g  '-IT (2.10) 

We a s s u m e  that  the t e m p e r a t u r e  osc i l la t ion  in the acoust ic  wave takes  p lace  at the f requency of the 
ve loc i ty  osc i l la t ions .  F r o m  this  assumpt ion  we deduce the equation 

k2r i0) 

kit g 
Now,, consol idat ing (2.6) and (2.10), we have 

g v - x go _ _ _ s J -  - -  ( a )  V Y I g-2 o)i 

Separat ing the  r ea l  and i m a g i n a r y  p a r t s  in the l a t t e r  equation, we r e p r e s e n t  the  complex veloci ty  of  sound as 

follows: 
g = gl + ig2. 
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Fig. 1. Results  of measuremen t s  and theory  for five mona-  
tomic  gases,  Solid curve) proposed  theory;  dashed curve) 
Barnet t  approximation. 

We recal l  here  that the quantity g2 is small  in compar ison with gl, because  the sound absorption coefficient 
is always small.  We also use the well-known Eiken 

k 

whereupon we readily deduce the equations 

2glg~ = --7- V 

The following additional notation is introduced here :  

go 
b l -  g~ 

relation 

1 
(97 - -  5) = 7f, 

4 

rbl] t 

- - - -  , ~ 0  ~ O" 

(2.11) 

If we neglect g~ in compar ison with g~, we can show at once that the absorption coefficient is 

a := 9g__2_ (2.12) 

Normally,  the quantity ~' = a g 0 / w  is involved in the p rocess ing  of the experimental  data [4]. Now by 
well-known rules  we readi ly obtain from (2.11) 

ct' = V 2-7 (Ar - -  Bao) , (2. i 3) 
(r--2%) 2 I f ( r - -2%) (1  + ]/ 1 + m) 

(3 - -  ?) (97 - -  5) 
/ ' n ~  

7 ~ (r --  2%) ~ 

A =  (77+57~) (1+ | / 1  §  , (2.14) 
47 ~(2+ 2 t /1  + r e + m )  

(7 + 5V)(1 + ] / 1  +m)  + 2 ( 5 - - 9 7 )  

27(2~- 2V 1 + m +m)  
B = 

where 

If in (2.13) we set m = 0, a0 = -0 .2875,  and 7 = 5 / 3 ,  as is consistent with a monatomic gas, Eq. (2.13) then 
goes over  to the Predvodi te lev express ion [3] 

cd = ~r(0.Tr + 0.23) . (2.15) 
(r --}- 0.575) ~ v'r + 0.575 

However, it is  obvious from (2.15) that m can be approximately equal to zero only for large  values of r, 
i .e. ,  for  dense gases .  In the ease  of monatomic  gases ,  therefore ,  Eq. (2.13) ref ines  not only (2.15), but also 
the experimental  constant ~0. To verify Eq. (2.13) we r e f e r  to the exper iments  conducted by Greens~pan on 
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five monatomic  gases  [4], along with the resu l t s  of  Mey e r  and Ses s l e r  [5] (see Fig. 1). The exper iments  
show that all five gases  behave identically.  Equation (2.13) is  applied to the exper imenta l  resu l t s  for  ~0 = 
-0 .12 .  It i s  evident f rom Fig. 1 that agreement  between theory  and exper iment  is  obtained up to r = 0.15, 
which co r re sponds  to a Knudsen number  of o r d e r  unity [5]. 

The Predvodi te lev  equations can t h e r e f o r e  be  used  in descr ib ing r a r e f i ed  gas flows up to Knudsen num- 
be r s  c lose  to unity. 

N O T A T I O N  

V, hydrodynamic  veloci ty  vec to r ;  ~, v iscosi ty ;  p, density; T, specif ic  heat ra t io;  go, Laplace value of 
the  veloci ty  of sound; w, cycl ic  f requency;  Cv, specif ic  heat at constant volume; g, phase  velocity of sound; 
k lu ,  ~1o* k ~ ,  k l T ,  p a r a m e t e r s  of f i r s t - o r d e r  discontinuity; k2u, X2T, p a r a m e t e r s  of  s econd-o rde r  discon- 
tinuity; k, t he r ma l  conductivity; R, un iversa l  gas constant. 
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F L O W  AND H E A T  T R A N S F E R  IN A J E T  N E A R  T H E  

S T A G N A T I O N  P O I N T  O F  A C O N C A V E  B O D Y  

I .  A. B e l o v  a n d  S. A. I s a e v  UDC 536.242:532.522.2 

Resul ts  a re  p r e sen t ed  of calculat ions of flow and heat t r a n s f e r  n e a r  the stagnation point of a 
c o n c a v e  body in a two-dimensional  subsonic jet~ using a flow es tabl ishment  method. 

The in te rac t ion  of a jet  flow with blunt bodies  is  usually taken to mean the flow n ea r  the stagnation 
point,  outside the region influenced by the body shape. We cons ider  the prob lem of  specifying such a flow 
n e a r  the sur face  of a concave body of constant curva ture ,  located in a subsonic jet. The  flow is assumed to 
be  two-dimensional ,  and the fluid is  a s sumed  to be incompress ib le  and viscous nea r  the body surface.  We 
r e s t r i c t  the analysis  to a small  region nea r  the stagnation point, and r ep re sen t  the flow of the jet  far  f rom 
the sur face  as being approximate ly  the  flow f rom an ideal source.  

In the body-f ixed  coordinate  sys tem (~, ~-), (Fig. 1), where  the ~ axis is  tangent to the body surface,  and 
the ~ axis is  normal  to it, we se lec t  the sect ion ~ = ~-oo, where  the source  flow veloci ty  is  known and equal to 
Voo. We cons ider  that the sect ion ~oo is  at a cons iderable  dis tance f rom the obstacle ,  so that the effect of the 
obstac le  on the sou rce  flow is  negligibly small  here .  The flow is symmet r i c  re la t ive  to the obstacle cen ter  

= ~ = 0, and the ex te rna l  flow is  i r ro ta t iona l ;  the effect  of  v i scos i ty  i s  local ized in a thin boundary l aye r  
nea r  the obs tac le  surface.  The  p rob lem is  solved in two stag_es.In the f i rs t  stage we seek a solution in the 
region where  the source  flow and the obstac le  in te rac t  (0 _< g -< ~ ) ,  and we formula te  boundary conditions 
for  the  v iscous  flow and heat t r a n s f e r  in the obstacle  boundary layer .  In the second stage we cons ider  the 
es tabl ishment  of a boundary l aye r  on the obstacle ,  and de te rmine  the fr ic t ion r w and the heat flux qw to the 
surface .  The  p rob lem is  solved by a flow es tabl ishment  method, applied to the unsteady boundary - l aye r  equa- 
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